
GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

I18N : how to

Georges Khaznadar <georgesk@ofset.org>

lycée Jean Bart – Dunkerque/OFSET

October 2007

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

1 GNU Gettext : a full-featured system
I18N
L10N

2 A case study
The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

3 The developer’s point of view
4 The translator’s point of view
5 Available tools
6 Other package types

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

I18N
L10N

GNU Gettext is the right tool to make efficient translations of free
software pieces. It allows to split the work in two parts:

1 The I nternationalisatio︸ ︷︷ ︸
18

N: I18N

2 The Localisatio︸ ︷︷ ︸
10

N: L10N
The internationalisation part is controlled by the developers, the
localisation is the job of people having good linguistic skills.
Of course, some skills can overlap.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

I18N
L10N

The internationalisation job must be done once for a given software
package. It is preparing the sources to be translated, without
translating them. The key work is to mark the strings which have
to be translated. It is the first stage in using GNU Gettext.

1st example sprintf(buf, "%s", varname);
no markup needed since the string has just a
functional value.

2nd example errmsg("Can’t open file.");
needs a markup, since this string is intended to be
read by users. Here is the markup technique:
errmsg(_("Can’t open file."));

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

I18N
L10N

The second stage in I18N is to define the construct used to mark
the strings, like in _("the string to translate") , i.e. the
_() , as something valid in the language used for the software’s
sources (C, C++, Python, Perl, Ada, etc.)
It is often defined either as a macro or as a function. Some lines
are added in the sources to link the program to the GNU Gettext
library, and to catch the current locale from the environment.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

I18N
L10N

The localisation is a work for people with good linguistic skills, it
can be performed in a friendly environment, like Emacs Poedit or
Kbabel. Here is a non exhaustive list of features of these
environments:

View the original strings and their translations
Go to the next untranslated string
Go to the next fuzzy translation
See the contexts for this string in the sources
See other translators’s work in the same context (good
translators often master more than two languages).

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

I18N
L10N

Some screenshots: Poedit, Kbabel.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

The package timecalc

Timecalc is an application to compute as accurately as possible
timestamps and delays, and taking in account as well as possible
fuzzy time units like one month, one year, etc. It is (c) 2000-03 by
Jean-Pierre VERRUE, distributed under the GPL license.
Here is a typical string which may be translated to other
languages, ine the C source code :

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

The initial package is written in C language, with English messages
and informational character strings. This is a good start point,
since Gettext requires that the identifiers used for the translations
be pure ASCII strings.

The author, Jean-Pierre VERRUE, is French. Had he written the
messages in French, which uses some non-ASCII characters, the
first step would have been to replace them by pure ASCII
identifiers.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

Running etags

The application etags allows to create a “TAGS” file usable by
Emacs (if you prefer vi as a text editor, use ctags).
Just run once the following command: etags *.c

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

Deciding which strings need translation

Here is a recipe:

With Emacs, edit a new file named template.po in the same
directory than the TAGS file.
Use the keyboard shortcut , (comma) to find the next
candidate string.
When the string must be translated, use the keyboard
shortcut Alt+, (press down the Alt key then hit the comma
... this combination is named M-, in Emacs jargon)

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

When you press Alt+, two thing happen at the same time: the
original message is added in the file template.po and the original
string in the source file is marked.

Figure: The message is added in template.po

Figure: The message is marked in the C source file

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

The following steps are a summary from GNU’s documentation
about gettext: see GNU’s website,
http://www.gnu.org/software/gettext/

First : Import the gettext declaration and create a simple macro

Then: Trigger gettext operations in the main function:

Georges Khaznadar <georgesk@ofset.org> I18N : how to

http://www.gnu.org/software/gettext/

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

Here are five steps to manage a localisation. Please notice that the
macros LOCALEDIR and PACKAGE shold expand to useful values,
for example respectively /usr/share/locale and timecalc.

Copy the file template.po to a localisation file, for example
zh_TW.po
use Emacs, Poedit or Kbabel to translate the strings
compile the localisation file with “msgfmt” to make a binary
file
upon install, copy this binary file under the “LOCALEDIR”,
with the name “PACKAGE.mo”

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The initial package
Marking translatable strings
Adding Gettext capabilities
Making the first localisation
Automating further development cycles

To make things happen faster after this i18n work, it is worth
creating a separate directory, named po, move every gettext stuff
into it, and define some makefile which can:

grab every new marked string from the sources, thanks to the
command xgettext
merge the new strings which appear in template.po into every
maintained localisation file
compile the localisation files after they are updated and install
the binaries in the right place.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

When the i18n work is done, the developers just need to mark the
new strings with _() whenever they should be translated, then
release the new versions, and send a message to the language
teams to announce the new release.
It is possible for the eveloper to fiddle with on-the-fly language
choices, juste by modifying slightly the usage of the function
setlocale in the main function. Beware: for it to be possible, the
language variant choosen on-the-fly must exist in the currently
intalled locales.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

The translators have to do the first full translation when they
receive the first i18nised release of a program. Later, they just
need to watch the annunces for new releases and check whether
new translatable strings have been added.
It is possible to merge a localisation PO file with a compendium of
already translated frequent sentences (like save file, open file, quit,
save as, etc.) Then the system wil create “fuzzy” translations,
which just need to be reviewed, and eventually fixed by the
translator.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

Available tools

etags analyse the structure of sources and prepare the
markup

emacs features a powerful tool to mark the right strings and
gather them into a template for PO files.

xgettext extracts every marked strings and updates the po files
msgmerge merges PO files, enventually creating fuzzy

translations
msgfmt compiles PO files to make MO files

Georges Khaznadar <georgesk@ofset.org> I18N : how to

GNU Gettext : a full-featured system
A case study

The developer’s point of view
The translator’s point of view

Available tools
Other package types

Other package types

GNU Gettext is suitable for a variety of languages : C++,
Objective-C, sh script, bash script, Python, GNU CLISP, Emacs
Lisp, librep, GNU Smalltalk, Java, GNU awk, Pascal, wxWidgets ,
Tcl, Perl, PHP, Pike, Ruby, and R.
The utilities may vary for each of these languages, so the
developers must remain adaptative.
However, the translation teams just need to deal with PO
files, independently frm the language of the sources of the
package, sot they keep their usages and they favorite tools
and can be efficient.

Georges Khaznadar <georgesk@ofset.org> I18N : how to

	GNU Gettext : a full-featured system
	I18N
	L10N

	A case study
	The initial package
	Marking translatable strings
	Adding Gettext capabilities
	Making the first localisation
	Automating further development cycles

	The developer's point of view
	The translator's point of view
	Available tools
	Other package types

